LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hypercritical accretion during common envelopes in triples leading to binary black holes in the pair-instability-supernova mass gap

Photo from wikipedia

Hydrodynamic studies of stellar-mass compact objects (COs) in a common envelope (CE) have shown that the accretion rate onto the CO is a few orders of magnitude below the Bondi-Hoyle-Lyttleton… Click to show full abstract

Hydrodynamic studies of stellar-mass compact objects (COs) in a common envelope (CE) have shown that the accretion rate onto the CO is a few orders of magnitude below the Bondi-Hoyle-Lyttleton (BHL) estimate. This is several orders of magnitude above the Eddington limit and above the limit for neutrino-cooled accretion (i.e. hypercritical accretion, or HCA). Considering that a binary system inside the CE of a third star accretes material at nearly the same rate as a single object of the same total mass, we propose stellar-evolution channels which form binary black hole (BBH) systems with its component masses within the pair-instability supernova (PISN) mass gap. Our model is based on HCA onto the BBH system engulfed into the CE of a massive tertiary star. Furthermore, we propose a mass transfer mode which allows to store mass lost by the binary onto a third star. Through the use of population synthesis simulations for the evolution of BBHs and standard binary-evolution principles for the interaction with a tertiary star, we are able to produce BBHs masses consistent with those estimated for GW190521. We also discuss the massive binary system Mk34 as a possible progenitor of BBHs in the PISN gap.

Keywords: binary black; accretion; hypercritical accretion; gap; mass; pair instability

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.