Brown dwarfs with well-measured masses, ages and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to… Click to show full abstract
Brown dwarfs with well-measured masses, ages and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos-Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately $3.59_{-1.15}^{+0.87}$ Gyrs at a distance of 36.99 ± 0.03 pc. In advance of our high-contrast imaging observations, we combined precision HARPS RVs and HGCA astrometry to predict the potential companion’s location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the L′ band, which revealed a companion with a contrast of $\Delta L^{\prime }_p = 9.20\pm 0.06$ mag at a projected separation of ≈0${^{\prime\prime}_{.}}$35 (≈13 AU) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source MCMC orbit fitting code ${\tt orvara }$. We obtain a dynamical mass of $65.9_{-1.7}^{+2.0} M_{\rm Jup}$ that places HD 176535 B firmly in the brown dwarf regime. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of $\rm log(L_{bol}/L_{\odot }) = -5.26\pm 0.07$ and a model-dependent effective temperature of 980 ± 35 K for HD 176535 B. We infer HD 176535 B to be a T dwarf from its mass, age and luminosity. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/KPIC, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph.
               
Click one of the above tabs to view related content.