LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hickson-like compact groups inhabiting different environments

Photo by efekurnaz from unsplash

Although Compact Groups of galaxies (CGs) have been envisioned as isolated extremely dense structures in the Universe, it is accepted today that many of them could be not as isolated… Click to show full abstract

Although Compact Groups of galaxies (CGs) have been envisioned as isolated extremely dense structures in the Universe, it is accepted today that many of them could be not as isolated as thought. In this work, we study Hickson-like CGs identified in the Sloan Digital Sky Survey Data Release 16 to analyse these systems and their galaxies when embedded in different cosmological structures. To achieve this goal, we identify several cosmological structures where CGs can reside: Nodes of filaments, Loose Groups, Filaments and cosmic Voids. Our results indicate that 45 per cent of CGs do not reside in any of these structures, i.e., they can be considered non-embedded or isolated systems. Most of the embedded CGs are found inhabiting Loose Groups and Nodes, while there are almost no CGs residing well inside cosmic Voids. Some physical properties of CGs vary depending on the environment they inhabit. CGs in Nodes show the largest velocity dispersions, the brightest absolute magnitude of the first-ranked galaxy, and the smallest crossing times, while the opposite occurs in Non-Embedded CGs. When comparing galaxies in all the environments and galaxies in CGs, CGs show the highest fractions of red/early-type galaxy members in most of the absolute magnitudes ranges. The variation between galaxies in CGs inhabiting one or another environment is not as significant as the differences caused by belonging or not to a CG. Our results suggest a plausible scenario for galaxy evolution in CGs in which both, large-scale and local environments play essential roles.

Keywords: cgs; hickson like; like compact; groups inhabiting; compact groups; galaxies cgs

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.