Being the first of its kind, the white dwarf WD 1145+017 exhibits a complex system of disintegrating debris which offers a unique opportunity to study its disruption process in real… Click to show full abstract
Being the first of its kind, the white dwarf WD 1145+017 exhibits a complex system of disintegrating debris which offers a unique opportunity to study its disruption process in real time. Even with plenty of transit observations there are no clear constraints on the masses or eccentricities of such debris. Using N-body simulations, we show that masses greater than ≃1020 kg (a tenth of the mass of Ceres) or orbits that are not nearly circular (eccentricity > 10−3) dramatically increase the chances of the system becoming unstable within 2 yr, which would contrast with the observational data over this timespan. We also provide a direct comparison between transit phase shifts detected in the observations and by our numerical simulations.
               
Click one of the above tabs to view related content.