LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Explaining the variability of WD 1145+017 with simulations of asteroid tidal disruption

Photo by edenconstantin0 from unsplash

Post-main-sequence planetary science has been galvanised by the striking variability, depth and shape of the photometric transit curves due to objects orbiting white dwarf WD 1145+017, a star which also… Click to show full abstract

Post-main-sequence planetary science has been galvanised by the striking variability, depth and shape of the photometric transit curves due to objects orbiting white dwarf WD 1145+017, a star which also hosts a dusty debris disc and circumstellar gas, and displays strong metal atmospheric pollution. However, the physical properties of the likely asteroid which is discharging disintegrating fragments remain largely unconstrained from the observations. This process has not yet been modelled numerically. Here, we use the N-body code PKDGRAV to compute dissipation properties for asteroids of different spins, densities, masses, and eccentricities. We simulate both homogeneous and differentiated asteroids, for up to two years, and find that the disruption timescale is strongly dependent on density and eccentricity, but weakly dependent on mass and spin. We find that primarily rocky differentiated bodies with moderate (∼ 3−4 g/cm3 ) bulk densities on near-circular (e . 0.1) orbits can remain intact while occasionally shedding mass from their mantles. These results suggest that the asteroid orbiting WD 1145+017 is differentiated, resides just outside of the Roche radius for bulk density but just inside the Roche radius for mantle density, and is more akin physically to an asteroid like Vesta instead of one like Itokawa.

Keywords: 1145 017; 017 simulations; disruption; variability 1145; variability; explaining variability

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.