LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments

Photo from wikipedia

Binary black holes may form both through isolated binary evolution and through dynamical interactions in dense stellar environments. The formation channel leaves an imprint on the alignment between the black… Click to show full abstract

Binary black holes may form both through isolated binary evolution and through dynamical interactions in dense stellar environments. The formation channel leaves an imprint on the alignment between the black hole spins and the orbital angular momentum. Gravitational waves from these systems directly encode information about the spin--orbit misalignment angles, allowing them to be (weakly) constrained. Identifying sub-populations of spinning binary black holes will inform us about compact binary formation and evolution. We simulate a mixed population of binary black holes with spin--orbit misalignments modelled under a range of assumptions. We then develop a hierarchical analysis and apply it to mock gravitational-wave observations of these populations. Assuming a population with dimensionless spin magnitudes of $\chi = 0.7$, we show that tens of observations will make it possible to distinguish the presence of subpopulations of coalescing binary black holes based on their spin orientations. With $100$ observations it will be possible to infer the relative fraction of coalescing binary black holes with isotropic spin directions (corresponding to dynamical formation in our models) with a fractional uncertainty of $\sim 40\%$. Meanwhile, only $\sim 5$ observations are sufficient to distinguish between extreme models---all binary black holes either having exactly aligned spins or isotropic spin directions.

Keywords: spin orbit; black hole; binary black; black holes

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.