LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cosmological constraints from multiple tracers in spectroscopic surveys

Photo by dylan_nolte from unsplash

We use the Fisher matrix formalism to study the expansion and growth history of the Universe using galaxy clustering with 2D angular cross-correlation tomography in spectroscopic or high resolution photometric… Click to show full abstract

We use the Fisher matrix formalism to study the expansion and growth history of the Universe using galaxy clustering with 2D angular cross-correlation tomography in spectroscopic or high resolution photometric redshift surveys. The radial information is contained in the cross correlations between narrow redshift bins. We show how multiple tracers with redshift space distortions cancel sample variance and arbitrarily improve the constraints on the dark energy equation of state $\omega(z)$ and the growth parameter $\gamma$ in the noiseless limit. The improvement for multiple tracers quickly increases with the bias difference between the tracers, up to a factor $\sim4$ in $\text{FoM}_{\gamma\omega}$. We model a magnitude limited survey with realistic density and bias using a conditional luminosity function, finding a factor 1.3-9.0 improvement in $\text{FoM}_{\gamma\omega}$ -- depending on global density -- with a split in a halo mass proxy. Partly overlapping redshift bins improve the constraints in multiple tracer surveys a factor $\sim1.3$ in $\text{FoM}_{\gamma\omega}$. This findings also apply to photometric surveys, where the effect of using multiple tracers is magnified. We also show large improvement on the FoM with increasing density, which could be used as a trade-off to compensate some possible loss with radial resolution.

Keywords: fom gamma; multiple tracers; constraints multiple; text fom

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.