LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dark matter annihilation in the circumgalactic medium at high redshifts

Photo from wikipedia

Annihilating dark matter (DM) models offer promising avenues for future DM detection, in particular via modification of astrophysical signals. However when modelling such potential signals at high redshift the emergence… Click to show full abstract

Annihilating dark matter (DM) models offer promising avenues for future DM detection, in particular via modification of astrophysical signals. However when modelling such potential signals at high redshift the emergence of both dark matter and baryonic structure, as well as the complexities of the energy transfer process, need to be taken into account. In the following paper we present a detailed energy deposition code and use this to examine the energy transfer efficiency of annihilating dark matter at high redshift, including the effects on baryonic structure. We employ the PYTHIA code to model neutralino-like DM candidates and their subsequent annihilation products for a range of masses and annihilation channels. We also compare different density profiles and mass-concentration relations for 10^5-10^7 M_sun haloes at redshifts 20 and 40. For these DM halo and particle models, we show radially dependent ionisation and heating curves and compare the deposited energy to the haloes' gravitational binding energy. We use the "filtered" annihilation spectra escaping the halo to calculate the heating of the circumgalactic medium and show that the mass of the minimal star forming object is increased by a factor of 2-3 at redshift 20 and 4-5 at redshift 40 for some DM models.

Keywords: annihilation; energy; matter; dark matter; circumgalactic medium; redshift

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.