LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Explaining the morphology of supernova remnant (SNR) 1987A with the jittering jets explosion mechanism

Photo by mostly_brave from unsplash

We find that the remnant of supernova (SN) 1987A share some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen… Click to show full abstract

We find that the remnant of supernova (SN) 1987A share some morphological features with four supernova remnants (SNRs) that have signatures of shaping by jets, and from that we strengthen the claim that jets played a crucial role in the explosion of SN 1987A. Some of the morphological features appear also in planetary nebulae where jets are observed. The clumpy ejecta bring us to support the claim that the jittering jets explosion mechanism can account for the structure of the remnant of SN 1987A, i.e., SNR 1987A. We conduct a preliminary attempt to quantify the fluctuations in the angular momentum of the mass that is accreted on to the newly born neutron star via an accretion disk or belt. The accretion disk/belt launches the jets that explode core collapse supernovae (CCSNe). The relaxation time of the accretion disk/belt is comparable to the duration of a typical jet-launching episode in the jittering jets explosion mechanism, and hence the disk/belt has no time to relax. We suggest that this might explain unequal two opposite jets that later lead to unequal sides of the elongated structures in SNR of CCSNe. We reiterate our earlier call for a paradigm shift from neutrino-driven explosion to a jet-driven explosion of CCSNe.

Keywords: explosion mechanism; snr 1987a; jittering jets; jets explosion; supernova

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.