LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The GALAH survey: verifying abundance trends in the open cluster M67 using non-LTE modelling

Open cluster members are coeval and share the same initial bulk chemical composition. Consequently, differences in surface abundances between members of a cluster that are at different evolutionary stages can… Click to show full abstract

Open cluster members are coeval and share the same initial bulk chemical composition. Consequently, differences in surface abundances between members of a cluster that are at different evolutionary stages can be used to study the effects of mixing and internal chemical processing. We carry out an abundance analysis of seven elements (Li, O, Na, Mg, Al, Si, and Fe) in 66 stars belonging to the open cluster M67, based on high resolution GALAH spectra, 1D MARCS model atmospheres, and non-local thermodynamic equilibrium (non-LTE) radiative transfer. From the non-LTE analysis, we find a typical star-to-star scatter in the abundance ratios of around 0.05 dex. We find trends in the abundance ratios with effective temperature, indicating systematic differences in the surface abundances between turn-off and giant stars; these trends are more pronounced when LTE is assumed. However, trends with effective temperature remain significant for Al and Si also in non-LTE. Finally, we compare the derived abundances with prediction from stellar evolution models including effects of atomic diffusion. We find overall good agreement for the abundance patterns of dwarfs and sub-giant stars, but the abundances of cool giants are lower relative to less evolved stars than predicted by the diffusion models, in particular for Mg.

Keywords: non lte; abundance; open cluster; cluster m67

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.