LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superburst oscillations: ocean and crustal modes excited by carbon-triggered type I X-ray bursts

Photo from wikipedia

Accreting neutron stars (NS) can exhibit high frequency modulations in their light curves during thermonuclear X-ray bursts, known as burst oscillations. The frequencies can be offset from the spin frequency… Click to show full abstract

Accreting neutron stars (NS) can exhibit high frequency modulations in their light curves during thermonuclear X-ray bursts, known as burst oscillations. The frequencies can be offset from the spin frequency of the NS by several Hz, and can drift by 1–3 Hz. One possible explanation is a mode in the bursting ocean, the frequency of which would decrease (in the rotating frame) as the burst cools, hence explaining the drifts. Most burst oscillations have been observed during the H/He-triggered bursts; however there has been one observation of oscillations during a superburst; hours long Type I X-ray bursts caused by unstable carbon burning deeper in the ocean. This paper calculates the frequency evolution of an oceanic r mode during a superburst. The rotating frame frequency varies during the burst from 4–14 Hz and is sensitive to the background parameters, in particular the temperature of the ocean and ignition depth. This calculation is compared to the superburst oscillations observed on 4U-1636-536. The predicted mode frequencies (∼10 Hz) would require a spin frequency of ∼592 Hz to match observations; 6 Hz higher than the spin inferred from an oceanic r-mode model for the H/He-triggered burst oscillations. This model also overpredicts the frequency drift during the superburst by 90 per cent⁠.

Keywords: mode; frequency; type ray; superburst oscillations; ray bursts

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.