LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the ALMA observability of nascent massive multiple systems formed by gravitational instability

Photo from wikipedia

Massive young stellar object (MYSOs) form during the collapse of high-mass pre-stellar cores, where infalling molecular material is accreted through a centrifugally-balanced accretion disc that is subject to efficient gravitational… Click to show full abstract

Massive young stellar object (MYSOs) form during the collapse of high-mass pre-stellar cores, where infalling molecular material is accreted through a centrifugally-balanced accretion disc that is subject to efficient gravitational instabilities. In the resulting fragmented accretion disc of the MYSO, gaseous clumps and low-mass stellar companions can form, which will influence the future evolution of massive protostars in the Hertzsprung-Russell diagram. We perform dust continuum radiative transfer calculations and compute synthetic images of disc structures modelled by the gravito-radiation-hydrodynamics simulation of a forming MYSO, in order to investigate the Atacama Large Millimeter/submillimeter Array (ALMA) observability of circumstellar gaseous clumps and forming multiple systems. Both spiral arms and gaseous clumps located at ~a few 100 au from the protostar can be resolved by interferometric ALMA Cycle 7 C43-8 and C43-10 observations at band 6 (1.2 mm), using a maximal 0.015" beam angular resolution and at least 10-30 min exposure time for sources at distances of 1-2 kpc. Our study shows that substructures are observable regardless of their viewing geometry or can be inferred in the case of an edge-viewed disc. The observation probability of the clumps increases with the gradually increasing efficiency of gravitational instability at work as the disc evolves. As a consequence, large discs around MYSOs close to the zero-age-main-sequence line exhibit more substructures than at the end of the gravitational collapse. Our results motivate further observational campaigns devoted to the close surroundings of the massive protostars S255IR-NIRS3 and NGC 6334I-MM1, whose recent outbursts are a probable signature of disc fragmentation and accretion variability.

Keywords: multiple systems; disc; alma observability; gravitational instability

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.