LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The luminosity function and formation rate of a complete sample of long gamma-ray bursts

Photo by lucabravo from unsplash

We study the luminosity function and formation rate of long gamma-ray bursts (GRBs) by using a maximum likelihood method. This is the first time this method is applied to a… Click to show full abstract

We study the luminosity function and formation rate of long gamma-ray bursts (GRBs) by using a maximum likelihood method. This is the first time this method is applied to a well-defined sample of GRBs that is complete in redshift. The sample is composed of 99 bursts detected by the Swift satellite, 81 of them with measured redshift and luminosity for a completeness level of $82\, {\rm per\, cent}$. We confirm that a strong redshift evolution in luminosity (with an evolution index of $\delta =2.22^{+0.32}_{-0.31}$) or in density ($\delta =1.92^{+0.20}_{-0.21}$) is needed in order to reproduce the observations well. But since the predicted redshift and luminosity distributions in the two scenarios are very similar, it is difficult to distinguish between these two kinds of evolutions only on the basis of the current sample. Furthermore, we also consider an empirical density case in which the GRB rate density is directly described as a broken power-law function and the luminosity function is taken to be non-evolving. In this case, we find that the GRB formation rate rises like $(1+z)^{3.85^{+0.48}_{-0.45}}$ for $z\lesssim 2$ and is proportional to $(1+z)^{-1.07^{+0.98}_{-1.12}}$ for $z\gtrsim 2$. The local GRB rate is $1.49^{+0.63}_{-0.64}$ Gpc−3 yr−1. The GRB rate may be consistent with the cosmic star formation rate (SFR) at $z\lesssim 2$, but shows an enhancement compared to the SFR at $z\gtrsim 2$.

Keywords: luminosity function; luminosity; rate; formation rate

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.