Coalescing compact binaries emitting gravitational wave (GW) signals, as recently detected by the Advanced LIGO-Virgo network, constitute a population over the multi-dimensional space of component masses and spins, redshift, and… Click to show full abstract
Coalescing compact binaries emitting gravitational wave (GW) signals, as recently detected by the Advanced LIGO-Virgo network, constitute a population over the multi-dimensional space of component masses and spins, redshift, and other parameters. Characterizing this population is a major goal of GWobservations and may be approached via parametric models.We demonstrate hierarchical inference for such models with a method that accounts for uncertainties in each binary merger’s individual parameters, for mass-dependent selection effects, and also for the presence of a second population of candidate events caused by detector noise. Thus, the method is robust to potential biases from a contaminated sample and allows us to extract information from events that have a relatively small probability of astrophysical origin.
               
Click one of the above tabs to view related content.