LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Digging the population of compact binary mergers out of the noise

Photo from academic.microsoft.com

Coalescing compact binaries emitting gravitational wave (GW) signals, as recently detected by the Advanced LIGO-Virgo network, constitute a population over the multi-dimensional space of component masses and spins, redshift, and… Click to show full abstract

Coalescing compact binaries emitting gravitational wave (GW) signals, as recently detected by the Advanced LIGO-Virgo network, constitute a population over the multi-dimensional space of component masses and spins, redshift, and other parameters. Characterizing this population is a major goal of GWobservations and may be approached via parametric models.We demonstrate hierarchical inference for such models with a method that accounts for uncertainties in each binary merger’s individual parameters, for mass-dependent selection effects, and also for the presence of a second population of candidate events caused by detector noise. Thus, the method is robust to potential biases from a contaminated sample and allows us to extract information from events that have a relatively small probability of astrophysical origin.

Keywords: compact binary; population compact; digging population; binary mergers; mergers noise; population

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.