LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic theory of the electron strahl in the solar wind

Photo from wikipedia

We develop a kinetic theory for the electron strahl, a beam of energetic electrons which propagate from the sun along the Parker-spiral-shaped magnetic field lines. Assuming a Maxwellian electron distribution… Click to show full abstract

We develop a kinetic theory for the electron strahl, a beam of energetic electrons which propagate from the sun along the Parker-spiral-shaped magnetic field lines. Assuming a Maxwellian electron distribution function in the near-sun region where the plasma is collisional, we derive the strahl distribution function at larger heliospheric distances. We consider the two most important mechanisms that broaden the strahl: Coulomb collisions and interactions with oblique ambient whistler turbulence (anomalous diffusion). We propose that the energy regimes where these mechanisms are important are separated by an approximate threshold, ${\cal E}_\mathrm{ c}$; for the electron kinetic energies ${\cal E}\,\lt\, {\cal E}_\mathrm{ c}$ the strahl width is mostly governed by Coulomb collisions, while for ${\cal E}\,\gt\, {\cal E}_\mathrm{ c}$ by interactions with the whistlers. The Coulomb broadening decreases as the electron energy increases; the whistler-dominated broadening, on the contrary, increases with energy and it can lead to efficient isotropization of energetic electrons and to the formation of the electron halo. The threshold energy ${\cal E}_\mathrm{ c}$ is relatively high in the regions closer to the sun, and it gradually decreases with the distance, implying that the anomalous diffusion becomes progressively more important at large heliospheric distances. At 1 au, we estimate the energy threshold to be about ${\cal E}_\mathrm{ c}\,\sim\, 200\, {\rm eV}$.

Keywords: energy; kinetic theory; electron; cal mathrm; strahl

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.