LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Sensitivity of dark matter haloes to their accretion histories

Photo from wikipedia

We apply our recently proposed "quadratic genetic modification" approach to generating and testing the effects of alternative mass accretion histories for a single $\Lambda$CDM halo. The goal of the technique… Click to show full abstract

We apply our recently proposed "quadratic genetic modification" approach to generating and testing the effects of alternative mass accretion histories for a single $\Lambda$CDM halo. The goal of the technique is to construct different formation histories, varying the overall contribution of mergers to the fixed final mass. This enables targeted studies of galaxy and dark matter halo formation's sensitivity to the smoothness of mass accretion. Here, we focus on two dark matter haloes, each with four different mass accretion histories. We find that the concentration of both haloes systematically decreases as their merger history becomes smoother. This causal trend tracks the known correlation between formation time and concentration parameters in the overall halo population. At fixed formation time, we further establish that halo concentrations are sensitive to the order in which mergers happen. This ability to study an individual halo's response to variations in its history is highly complementary to traditional methods based on emergent correlations from an extended halo population.

Keywords: accretion; dark matter; mass; accretion histories; matter haloes

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.