LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The synchrotron maser emission from relativistic shocks in Fast Radio Bursts: 1D PIC simulations of cold pair plasmas

Photo by jonathanvez from unsplash

The emission process of Fast Radio Bursts (FRBs) remains unknown. We investigate whether the synchrotron maser emission from relativistic shocks in a magnetar wind can explain the observed FRB properties.… Click to show full abstract

The emission process of Fast Radio Bursts (FRBs) remains unknown. We investigate whether the synchrotron maser emission from relativistic shocks in a magnetar wind can explain the observed FRB properties. We perform particle-in-cell (PIC) simulations of perpendicular shocks in cold pair plasmas, checking our results for consistency among three PIC codes. We confirm that a linearly polarized X-mode wave is self-consistently generated by the shock and propagates back upstream as a precursor wave. We find that at magnetizations σ ≳ 1 (i.e. ratio of Poynting flux to particle energy flux of the pre-shock flow) the shock converts a fraction $f_\xi ^{\prime } \approx 7 \times 10^{-4}/\sigma ^2$ of the total incoming energy into the precursor wave, as measured in the shock frame. The wave spectrum is narrow-band (fractional width ≲1−3), with apparent but not dominant line-like features as many resonances concurrently contribute. The peak frequency in the pre-shock (observer) frame is $\omega ^{\prime \prime }_{\rm peak} \approx 3 \gamma _{\rm s | u} \omega _{\rm p}$, where γs|u is the shock Lorentz factor in the upstream frame and ωp the plasma frequency. At σ ≳ 1, where our estimated $\omega ^{\prime \prime }_{\rm peak}$ differs from previous works, the shock structure presents two solitons separated by a cavity, and the peak frequency corresponds to an eigenmode of the cavity. Our results provide physically grounded inputs for FRB emission models within the magnetar scenario.

Keywords: maser emission; synchrotron maser; fast radio; radio bursts; shock; emission

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.