LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

H-, He-like recombination spectra – III. n-changing collisions in highly excited Rydberg states and their impact on the radio, IR, and optical recombination lines

Photo from academic.microsoft.com

At intermediate to high densities, electron (de-)excitation collisions are the dominant process for populating or depopulating high Rydberg states. In particular, the accurate knowledge of the energy changing (n-changing) collisional… Click to show full abstract

At intermediate to high densities, electron (de-)excitation collisions are the dominant process for populating or depopulating high Rydberg states. In particular, the accurate knowledge of the energy changing (n-changing) collisional rates is determinant for predicting the radio recombination spectra of gaseous nebula. The different data sets present in the literature come either from impact parameter calculations or semi-empirical fits and the rate coefficients agree within a factor of 2. We show in this paper that these uncertainties cause errors lower than 5 per cent in the emission of radio recombination lines of most ionized plasmas of typical nebulae. However, in special circumstances where the transitions between Rydberg levels are amplified by maser effects, the errors can increase up to 20 per cent. We present simulations of the optical depth and Hnα line emission of active galactic nuclei broad-line regions and the Orion Nebula Blister to showcase our findings.

Keywords: recombination spectra; rydberg states; like recombination; spectra iii; recombination; recombination lines

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.