LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Formation of short-period planets by disc migration

Photo from wikipedia

Protoplanetary discs are thought to be truncated at orbital periods of around 10 d. Therefore, the origin of rocky short-period planets with P < 10 d is a puzzle. We propose that… Click to show full abstract

Protoplanetary discs are thought to be truncated at orbital periods of around 10 d. Therefore, the origin of rocky short-period planets with P < 10 d is a puzzle. We propose that many of these planets may form through the Type-I migration of planets locked into a chain of mutual mean motion resonances. We ran N-body simulations of planetary embryos embedded in a protoplanetary disc. The embryos experienced gravitational scatterings, collisions, disc torques, and dampening of orbital eccentricity and inclination. We then modelled Kepler observations of these planets using a forward model of both the transit probability and the detection efficiency of the Kepler pipeline. We found that planets become locked into long chains of mean motion resonances that migrate in unison. When the chain reaches the edge of the disc, the inner planets are pushed past the edge due to the disc torques acting on the planets farther out in the chain. Our simulated systems successfully reproduce the observed period distribution of short-period Kepler planets between 1 and 2 R⊕. However, we obtain fewer closely packed short-period planets than in the Kepler sample. Our results provide valuable insight into the planet formation process, and suggests that resonance locks, migration, and dynamical instabilities play important roles in the formation and evolution of close-in small exoplanets.

Keywords: short period; formation short; period; period planets; migration

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.