LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Objective vortex detection in an astrophysical dynamo

Photo from academic.microsoft.com

A novel technique for detecting Lagrangian vortices is applied to a helical magnetohydrodynamic dynamo simulation. The vortices are given by tubular level surfaces of the Lagrangian averaged vorticity deviation, the… Click to show full abstract

A novel technique for detecting Lagrangian vortices is applied to a helical magnetohydrodynamic dynamo simulation. The vortices are given by tubular level surfaces of the Lagrangian averaged vorticity deviation, the trajectory integral of the normed difference of the vorticity from its spatial mean. This simple method is objective, i.e. invariant under time-dependent rotations and translations of the coordinate frame. We also adapt the technique to use it on magnetic fields and propose the method of integrated averaged current deviation to determine precisely the boundary of magnetic vortices. The relevance of the results for the study of vortices in solar plasmas is discussed.

Keywords: dynamo; detection astrophysical; objective vortex; vortex detection; astrophysical dynamo

Journal Title: Monthly Notices of the Royal Astronomical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.