LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convergent Biochemical Pathways for Xanthine Alkaloid Production in Plants Evolved from Ancestral Enzymes with Different Catalytic Properties

Photo from wikipedia

Abstract Convergent evolution is widespread but the extent to which common ancestral conditions are necessary to facilitate the independent acquisition of similar traits remains unclear. In order to better understand… Click to show full abstract

Abstract Convergent evolution is widespread but the extent to which common ancestral conditions are necessary to facilitate the independent acquisition of similar traits remains unclear. In order to better understand how ancestral biosynthetic catalytic capabilities might lead to convergent evolution of similar modern-day biochemical pathways, we resurrected ancient enzymes of the caffeine synthase (CS) methyltransferases that are responsible for theobromine and caffeine production in flowering plants. Ancestral CS enzymes of Theobroma, Paullinia, and Camellia exhibited similar substrate preferences but these resulted in the formation of different sets of products. From these ancestral enzymes, descendants with similar substrate preference and product formation independently evolved after gene duplication events in Theobroma and Paullinia. Thus, it appears that the convergent modern-day pathways likely originated from ancestral pathways with different inferred flux. Subsequently, the modern-day enzymes originated independently via gene duplication and their convergent catalytic characteristics evolved to partition the multiple ancestral activities by different mutations that occurred in homologous regions of the ancestral proteins. These results show that even when modern-day pathways and recruited genes are similar, the antecedent conditions may be distinctive such that different evolutionary steps are required to generate convergence.

Keywords: ancestral enzymes; production; biochemical pathways; modern day; convergent biochemical

Journal Title: Molecular Biology and Evolution
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.