LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The High Mutational Sensitivity of ccdA Antitoxin Is Linked to Codon Optimality

Photo by martindorsch from unsplash

Deep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, non active-site residues are tolerant to mutations. Here we show that the ccdA antitoxin component… Click to show full abstract

Deep mutational scanning studies suggest that synonymous mutations are typically silent and that most exposed, non active-site residues are tolerant to mutations. Here we show that the ccdA antitoxin component of the E.coli ccdAB toxin-antitoxin system is unusually sensitive to mutations when studied in the operonic context. A large fraction (∼80%) of single-codon mutations, including many synonymous mutations in the ccdA gene shows inactive phenotype, but they retain native-like binding affinity towards cognate toxin, CcdB. Therefore, the observed phenotypic effects are largely not due to alterations in protein structure/stability, consistent with a large region of CcdA being intrinsically disordered. E. coli codon preference and strength of ribosome-binding associated with translation of downstream ccdB gene are found to be major contributors of the observed mutant phenotypes. In select cases, proteomics studies reveal altered ratios of CcdA:CcdB protein levels in vivo, suggesting that the ccdA mutations likely alter relative translation efficiencies of the two genes in the operon. We extend these results by studying single-site synonymous mutations that lead to loss of function phenotypes in the relBE operon upon introduction of rarer codons. Thus, in their operonic context, genes are likely to be more sensitive to both synonymous and non-synonymous point mutations than inferred previously.

Keywords: mutational sensitivity; ccda antitoxin; high mutational; antitoxin; synonymous mutations; ccda

Journal Title: Molecular Biology and Evolution
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.