LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolutionary Trajectories of New Duplicated and Putative De Novo Genes

Photo by robertbye from unsplash

Abstract The formation of new genes during evolution is an important motor of functional innovation, but the rate at which new genes originate and the likelihood that they persist over… Click to show full abstract

Abstract The formation of new genes during evolution is an important motor of functional innovation, but the rate at which new genes originate and the likelihood that they persist over longer evolutionary periods are still poorly understood questions. Two important mechanisms by which new genes arise are gene duplication and de novo formation from a previously noncoding sequence. Does the mechanism of formation influence the evolutionary trajectories of the genes? Proteins arisen by gene duplication retain the sequence and structural properties of the parental protein, and thus they may be relatively stable. Instead, de novo originated proteins are often species specific and thought to be more evolutionary labile. Despite these differences, here we show that both types of genes share a number of similarities, including low sequence constraints in their initial evolutionary phases, high turnover rates at the species level, and comparable persistence rates in deeper branchers, in both yeast and flies. In addition, we show that putative de novo proteins have an excess of substitutions between charged amino acids compared with the neutral expectation, which is reflected in the rapid loss of their initial highly basic character. The study supports high evolutionary dynamics of different kinds of new genes at the species level, in sharp contrast with the stability observed at later stages.

Keywords: evolutionary trajectories; putative novo; trajectories new; new duplicated; new genes; duplicated putative

Journal Title: Molecular Biology and Evolution
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.