LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of Cytochrome c Oxidase in Hypoxia Tolerant Sculpins (Cottidae, Actinopterygii)

Photo by sharonmccutcheon from unsplash

Vertebrate hypoxia tolerance can emerge from modifications to the oxygen (O2) transport cascade, but whether there is adaptive variation to O2 binding at the terminus of this cascade, mitochondrial cytochrome… Click to show full abstract

Vertebrate hypoxia tolerance can emerge from modifications to the oxygen (O2) transport cascade, but whether there is adaptive variation to O2 binding at the terminus of this cascade, mitochondrial cytochrome c oxidase (COX), is not known. In order to address the hypothesis that hypoxia tolerance is associated with enhanced O2 binding by mitochondria we undertook a comparative analysis of COX O2 kinetics across species of intertidal sculpins (Cottidae, Actinopterygii) that vary in hypoxia tolerance. Our analysis revealed a significant relationship between hypoxia tolerance (critical O2 tension of O2 consumption rate; Pcrit), mitochondrial O2 binding affinity (O2 tension at which mitochondrial respiration was half maximal; P50), and COX O2-binding affinity (apparent Michaelis-Menten constant for O2 binding to COX; Km,app O2). The more hypoxia tolerant species had both a lower mitochondrial P50 and lower COX Km,app O2, facilitating the maintenance of mitochondrial function to a lower O2 tension than in hypoxia intolerant species. Additionally, hypoxia tolerant species had a lower overall COX Vmax but higher mitochondrial COX respiration rate when expressed relative to maximal electron transport system respiration rate. In silico analyses of the COX3 subunit postulated as the entry point for O2 into the COX protein catalytic core, points to variation in COX3 protein stability (estimated as free energy of unfolding) contributing to the variation in COX Km,app O2. We propose that interactions between COX3 and cardiolipin at four amino acid positions along the same alpha-helix forming the COX3 v-cleft represent likely determinants of interspecific differences in COX Km,app O2.

Keywords: cytochrome oxidase; sculpins cottidae; hypoxia tolerant; cox; hypoxia; hypoxia tolerance

Journal Title: Molecular Biology and Evolution
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.