LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nature of Long-Range Evolutionary Constraint in Enzymes: Insights from Comparison to Pseudoenzymes with Similar Structures

Photo from wikipedia

Enzymes are known to fine-tune their sequences to optimize catalytic function, yet quantitative evolutionary design principles of enzymes remain elusive on the proteomic scale. Recently, it was found that the… Click to show full abstract

Enzymes are known to fine-tune their sequences to optimize catalytic function, yet quantitative evolutionary design principles of enzymes remain elusive on the proteomic scale. Recently, it was found that the catalytic site in enzymes induces long-range evolutionary constraint, where even sites distant to the catalytic site are more conserved than expected. Given that protein-fold usage is generally different between enzymes and nonenzymes, it remains an open question to what extent this long-range evolutionary constraint in enzymes is dictated, either directly or indirectly, by the special three-dimensional structure of the enzyme. To investigate this question, we have compared evolutionary properties of enzymes with those of counterpart pseudoenzymes that share the same protein fold but are catalytically inactive. We found that the long-range evolutionary constraint observed in enzymes is significantly reduced in pseudoenzyme counterparts, despite very high structural similarity (∼1.5 Å RMSD on average). Furthermore, this significant reduction in long-range evolutionary constraint is observed even in pseudoenzyme counterparts which retain the ligand-binding ability of enzymes. Finally, the distance between the site that induces the highest gradient of sequence conservation and the pseudocatalytic site in pseudoenzymes is significantly larger than the corresponding distance in enzymes. Taken together, our results suggest that the long-range evolutionary constraint in enzymes is induced mainly by the presence of the catalytic site rather than by the special three-dimensional structure of the enzyme, and that such long-range evolutionary constraint in enzymes depends mainly on the catalytic function of the active site rather than on the ligand-binding ability of the enzyme.

Keywords: constraint enzymes; evolutionary constraint; long range; range evolutionary

Journal Title: Molecular Biology and Evolution
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.