Abstract Many modern techniques employed to uncover the molecular fundamentals underlying biological processes require dissociated cells as their starting point/substrate. Investigations into ovarian endocrinology or folliculogenesis, therefore, necessitate robust protocols… Click to show full abstract
Abstract Many modern techniques employed to uncover the molecular fundamentals underlying biological processes require dissociated cells as their starting point/substrate. Investigations into ovarian endocrinology or folliculogenesis, therefore, necessitate robust protocols for dissociating the ovary into its constituent cell populations. While in the mouse, methods to obtain individual, mature follicles are well-established, the separation and isolation of single cells of all types from early mouse follicles, including somatic cells, has been more challenging. Herein we present two methods for the isolation of somatic cells in the ovary. These methods are suitable for a range of applications relating to the study of folliculogenesis and mouse ovarian development. First, an enzymatic dissociation utilising collagenase and a temporary, primary cell culture step using neonatal mouse ovaries which yields large quantities of granulosa cells from primordial, activating, and primary follicles. Second, a rapid papain dissociation resulting in a high viability single cell suspension of ovarian somatic cells in less than an hour, which can be applied from embryonic to adult ovarian samples. Collectively these protocols can be applied to a broad array of investigations with unique advantages and benefits pertaining to both.
               
Click one of the above tabs to view related content.