Maternal-effect genes (MEGs) play an important role in maintaining the survival and development of mammalian embryos at the cleavage stage after fertilization. Despite long-term efforts, the MEGs that regulate preimplantation… Click to show full abstract
Maternal-effect genes (MEGs) play an important role in maintaining the survival and development of mammalian embryos at the cleavage stage after fertilization. Despite long-term efforts, the MEGs that regulate preimplantation embryo development remain largely unknown. Here, using Whole-exome sequencing (WES) and homozygosity mapping, we identified a potential candidate gene associated with early embryo development: nucleoporin37 (NUP37), a nucleoporin gene that encodes a member of the nuclear pore complexes (NPCs) and regulates nuclear pore permeability and nucleocytoplasmic transport. Moreover, we determined the temporal and spatial expression patterns of Nup37 in mouse oocytes and early embryos, and explored the role of NUP37 in oocyte maturation and preimplantation embryo development. Immunoprecipitation assays confirmed that YAP1 binds to TEAD4 and NUP37. Furthermore, Nup37 gene knockdown reduced the nuclear import of YAP1 and downregulated the expression of YAP1-TEAD pathway downstream genes Rrm2 and Rpl13 in early embryos. Our study provides evidence that maternal NUP37 contributes to the nuclear import of YAP1 and then activates the YAP1-TEAD pathway, a signaling pathway essential for zygotic genome activation (ZGA). Nup37 may be a key gene involved in preimplantation embryo development in mammals.
               
Click one of the above tabs to view related content.