Abstract While antibodies are becoming an increasingly important therapeutic class, especially in personalized medicine, their development and optimization has been largely through experimental exploration. While there have been many efforts… Click to show full abstract
Abstract While antibodies are becoming an increasingly important therapeutic class, especially in personalized medicine, their development and optimization has been largely through experimental exploration. While there have been many efforts to develop computational tools to guide rational antibody engineering, most approaches are of limited accuracy when applied to antibody design, and have largely been limited to analysing a single point mutation at a time. To overcome this gap, we have curated a dataset of 242 experimentally determined changes in binding affinity upon multiple point mutations in antibody-target complexes (89 increasing and 153 decreasing binding affinity). Here, we have shown that by using our graph-based signatures and atomic interaction information, we can accurately analyse the consequence of multi-point mutations on antigen binding affinity. Our approach outperformed other available tools across cross-validation and two independent blind tests, achieving Pearson's correlations of up to 0.95. We have implemented our new approach, mmCSM-AB, as a web-server that can help guide the process of affinity maturation in antibody design. mmCSM-AB is freely available at http://biosig.unimelb.edu.au/mmcsm_ab/.
               
Click one of the above tabs to view related content.