LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+ or Cu2+ to catalyze the azide-alkyne ‘click’ reaction in water

Photo from academic.microsoft.com

Abstract To enable the optimal, biocompatible and non-destructive application of the highly useful copper (Cu+)-mediated alkyne-azide ‘click’ cycloaddition in water, we have isolated and characterized a 79-nucleotide DNA enzyme or… Click to show full abstract

Abstract To enable the optimal, biocompatible and non-destructive application of the highly useful copper (Cu+)-mediated alkyne-azide ‘click’ cycloaddition in water, we have isolated and characterized a 79-nucleotide DNA enzyme or DNAzyme, ‘CLICK-17’, that harnesses as low as sub-micromolar Cu+; or, surprisingly, Cu2+ (without added reductants such as ascorbate) to catalyze conjugation between a variety of alkyne and azide substrates, including small molecules, proteins and nucleic acids. CLICK-17’s Cu+ catalysis is orders of magnitude faster than that of either Cu+ alone or of Cu+ complexed to PERMUT-17, a sequence-permuted DNA isomer of CLICK-17. With the less toxic Cu2+, CLICK-17 attains rates comparable to Cu+, under conditions where both Cu2+ alone and Cu2+ complexed with a classic accelerating ligand, THPTA, are wholly inactive. Cyclic voltammetry shows that CLICK-17, unlike PERMUT-17, powerfully perturbs the Cu(II)/Cu(I) redox potential. CLICK-17 thus provides a unique, DNA-derived ligand environment for catalytic copper within its active site. As a bona fide Cu2+-driven enzyme, with potential for being evolved to accept only designated substrates, CLICK-17 and future variants promise the fast, safe, and substrate-specific catalysis of ‘click’ bioconjugations, potentially on the surfaces of living cells.

Keywords: dna; cu2; water; dna enzyme; click

Journal Title: Nucleic Acids Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.