LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RNA-guided DNA base damage repair via DNA polymerase-mediated nick translation

Photo from wikipedia

Abstract DNA repair is mediated by DNA synthesis guided by a DNA template. Recent studies have shown that DNA repair can also be accomplished by RNA-guided DNA synthesis. However, it… Click to show full abstract

Abstract DNA repair is mediated by DNA synthesis guided by a DNA template. Recent studies have shown that DNA repair can also be accomplished by RNA-guided DNA synthesis. However, it remains unknown how RNA can guide DNA synthesis to repair DNA damage. In this study, we revealed the molecular mechanisms underlying RNA-guided DNA synthesis and base damage repair mediated by human repair DNA polymerases. We showed that pol β, pol κ, and pol ι predominantly synthesized one nucleotide, and pol η, pol ν, and pol θ synthesized multi-nucleotides during RNA-guided DNA base damage repair. The steady-state kinetics showed that pol η exhibited more efficient RNA-guided DNA synthesis than pol β. Using molecular dynamics simulation, we further revealed dynamic conformational changes of pol β and pol η and their structural basis to accommodate the RNA template and misoriented triphosphates of an incoming nucleotide. We demonstrated that RNA-guided base damage repair could be accomplished by the RNA-guided DNA strand-displacement synthesis and nick translation leading to nick ligation in a double-strand DNA region. Our study revealed a novel RNA-guided base damage repair pathway during transcription and DNA replication.

Keywords: dna; damage; guided dna; rna guided; repair

Journal Title: Nucleic Acids Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.