LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

H3K56 deacetylation and H2A.Z deposition are required for aberrant heterochromatin spreading

Photo by enginakyurt from unsplash

Abstract Crucial mechanisms are required to restrict self-propagating heterochromatin spreading within defined boundaries and prevent euchromatic gene silencing. In the filamentous fungus Neurospora crassa, the JmjC domain protein DNA METHYLATION… Click to show full abstract

Abstract Crucial mechanisms are required to restrict self-propagating heterochromatin spreading within defined boundaries and prevent euchromatic gene silencing. In the filamentous fungus Neurospora crassa, the JmjC domain protein DNA METHYLATION MODULATOR-1 (DMM-1) prevents aberrant spreading of heterochromatin, but the molecular details remain unknown. Here, we revealed that DMM-1 is highly enriched in a well-defined 5-kb heterochromatin domain upstream of the cat-3 gene, hereby called 5H-cat-3 domain, to constrain aberrant heterochromatin spreading. Interestingly, aberrant spreading of the 5H-cat-3 domain observed in the dmm-1KO strain is accompanied by robust deposition of histone variant H2A.Z, and deletion of H2A.Z abolishes aberrant spreading of the 5H-cat-3 domain into adjacent euchromatin. Furthermore, lysine 56 of histone H3 is deacetylated at the expanded heterochromatin regions, and mimicking H3K56 acetylation with an H3K56Q mutation effectively blocks H2A.Z-mediated aberrant spreading of the 5H-cat-3 domain. Importantly, genome-wide analyses demonstrated the general roles of H3K56 deacetylation and H2A.Z deposition in aberrant spreading of heterochromatin. Together, our results illustrate a previously unappreciated regulatory process that mediates aberrant heterochromatin spreading.

Keywords: aberrant heterochromatin; heterochromatin; aberrant spreading; domain; heterochromatin spreading; h2a

Journal Title: Nucleic Acids Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.