LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of genome edited cells using CRISPRnano

Abstract Genome engineering-induced cleavage sites can be resolved by non-homologous end joining (NHEJ) or homology-directed repair (HDR). Identifying genetically modified clones at the target locus remains an intensive and laborious… Click to show full abstract

Abstract Genome engineering-induced cleavage sites can be resolved by non-homologous end joining (NHEJ) or homology-directed repair (HDR). Identifying genetically modified clones at the target locus remains an intensive and laborious task. Different workflows and software that rely on deep sequencing data have been developed to detect and quantify targeted mutagenesis. Nevertheless, these pipelines require high-quality reads generated by Next Generation Sequencing (NGS) platforms. Here, we have developed a robust, versatile, and easy-to-use computational webserver named CRISPRnano (www.CRISPRnano.de) that enables the analysis of low-quality reads generated by affordable and portable sequencers including Oxford Nanopore Technologies (ONT) devices. CRISPRnano allows fast and accurate identification, quantification, and visualization of genetically modified cell lines, it is compatible with NGS and ONT sequencing reads, and it can be used without an internet connection.

Keywords: cells using; identification genome; genome edited; identification; genome; edited cells

Journal Title: Nucleic Acids Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.