LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ChromLoops: a comprehensive database for specific protein-mediated chromatin loops in diverse organisms

Photo by nci from unsplash

Abstract Chromatin loops (or chromatin interactions) are important elements of chromatin structures. Disruption of chromatin loops is associated with many diseases, such as cancer and polydactyly. A few methods, including… Click to show full abstract

Abstract Chromatin loops (or chromatin interactions) are important elements of chromatin structures. Disruption of chromatin loops is associated with many diseases, such as cancer and polydactyly. A few methods, including ChIA-PET, HiChIP and PLAC-Seq, have been proposed to detect high-resolution, specific protein-mediated chromatin loops. With rapid progress in 3D genomic research, ChIA-PET, HiChIP and PLAC-Seq datasets continue to accumulate, and effective collection and processing for these datasets are urgently needed. Here, we developed a comprehensive, multispecies and specific protein-mediated chromatin loop database (ChromLoops, https://3dgenomics.hzau.edu.cn/chromloops), which integrated 1030 ChIA-PET, HiChIP and PLAC-Seq datasets from 13 species, and documented 1 491 416 813 high-quality chromatin loops. We annotated genes and regions overlapping with chromatin loop anchors with rich functional annotations, such as regulatory elements (enhancers, super-enhancers and silencers), variations (common SNPs, somatic SNPs and eQTLs), and transcription factor binding sites. Moreover, we identified genes with high-frequency chromatin interactions in the collected species. In particular, we identified genes with high-frequency interactions in cancer samples. We hope that ChromLoops will provide a new platform for studying chromatin interaction regulation in relation to biological processes and disease.

Keywords: specific protein; protein mediated; mediated chromatin; chromatin loops

Journal Title: Nucleic Acids Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.