Abstract RNA G-quadruplex (rG4) is a vital RNA tertiary structure motif that involves the base pairs on both Hoogsteen and Watson-Crick faces of guanines. rG4 is of great importance in… Click to show full abstract
Abstract RNA G-quadruplex (rG4) is a vital RNA tertiary structure motif that involves the base pairs on both Hoogsteen and Watson-Crick faces of guanines. rG4 is of great importance in the post-transcriptional regulation of gene expression. Experimental technologies have advanced to identify in vitro and in vivo rG4s across diverse transcriptomes. Building on these recent advances, here we present G4Atlas, the first transcriptome-wide G-quadruplex database, in which we have collated, classified, and visualized transcriptome rG4 experimental data, generated from rG4-seq, chemical profiling and ligand-binding methods. Our comprehensive database includes transcriptome-wide rG4s generated from 82 experimental treatments and 238 samples across ten species. In addition, we have also included RNA secondary structure prediction information across both experimentally identified and unidentified rG4s to enable users to display any potential competitive folding between rG4 and RNA secondary structures. As such, G4Atlas will enable users to explore the general functions of rG4s in diverse biological processes. In addition, G4Atlas lays the foundation for further data-driven deep learning algorithms to examine rG4 structural features.
               
Click one of the above tabs to view related content.