The single-step assembly of supramolecular complexes containing both i-motifs and G-quadruplexes (G4s) is demonstrated. This can be achieved because the formation of four-stranded i-motifs appears to be little affected by… Click to show full abstract
The single-step assembly of supramolecular complexes containing both i-motifs and G-quadruplexes (G4s) is demonstrated. This can be achieved because the formation of four-stranded i-motifs appears to be little affected by certain terminal residues: a five-cytosine tetrameric i-motif can bear ten-base flanking residues. However, things become complex when different lengths of guanine-repeats are added at the 3′ or 5′ ends of the cytosine-repeats. Here, a series of oligomers d(XGiXC5X) and d(XC5XGiX) (X = A, T or none; i < 5) are designed to study the impact of G-repeats on the formation of tetrameric i-motifs. Our data demonstrate that tetramolecular i-motif structure can tolerate specific flanking G-repeats. Assemblies of these oligonucleotides are polymorphic, but may be controlled by solution pH and counter ion species. Importantly, we find that the sequences d(TGiAC5) can form the tetrameric i-motif in large quantities. This leads to the design of two oligonucleotides d(TG4AC7) and d(TGBrGGBrGAC7) that self-assemble to form quadruplex supramolecules under certain conditions. d(TG4AC7) forms supramolecules under acidic conditions in the presence of K+ that are mainly V-shaped or ring-like containing parallel G4s and antiparallel i-motifs. d(TGBrGGBrGAC7) forms long linear quadruplex wires under acidic conditions in the presence of Na+ that consist of both antiparallel G4s and i-motifs.
               
Click one of the above tabs to view related content.