LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DNA flap creation by the RarA/MgsA protein of Escherichia coli

Photo by khadkamhn from unsplash

Abstract We identify a novel activity of the RarA (also MgsA) protein of Escherichia coli, demonstrating that this protein functions at DNA ends to generate flaps. A AAA+ ATPase in… Click to show full abstract

Abstract We identify a novel activity of the RarA (also MgsA) protein of Escherichia coli, demonstrating that this protein functions at DNA ends to generate flaps. A AAA+ ATPase in the clamp loader clade, RarA protein is part of a highly conserved family of DNA metabolism proteins. We demonstrate that RarA binds to double-stranded DNA in its ATP-bound state and single-stranded DNA in its apo state. RarA ATPase activity is stimulated by single-stranded DNA gaps and double-stranded DNA ends. At these double-stranded DNA ends, RarA couples the energy of ATP binding and hydrolysis to separating the strands of duplex DNA, creating flaps. We hypothesize that the creation of a flap at the site of a leading strand discontinuity could, in principle, allow DnaB and the associated replisome to continue DNA synthesis without impediment, with leading strand re-priming by DnaG. Replication forks could thus be rescued in a manner that does not involve replisome disassembly or reassembly, albeit with loss of one of the two chromosomal products of a replication cycle.

Keywords: mgsa protein; rara; dna; escherichia coli; protein escherichia; stranded dna

Journal Title: Nucleic Acids Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.