LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Computational prediction of regulatory, premature transcription termination in bacteria

Photo from wikipedia

A common strategy for regulation of gene expression in bacteria is conditional transcription termination. This strategy is frequently employed by 5′UTR cis-acting RNA elements (riboregulators), including riboswitches and attenuators. Such… Click to show full abstract

A common strategy for regulation of gene expression in bacteria is conditional transcription termination. This strategy is frequently employed by 5′UTR cis-acting RNA elements (riboregulators), including riboswitches and attenuators. Such riboregulators can assume two mutually exclusive RNA structures, one of which forms a transcriptional terminator and results in premature termination, and the other forms an antiterminator that allows read-through into the coding sequence to produce a full-length mRNA. We developed a machine-learning based approach, which, given a 5′UTR of a gene, predicts whether it can form the two alternative structures typical to riboregulators employing conditional termination. Using a large positive training set of riboregulators derived from 89 human microbiome bacteria, we show high specificity and sensitivity for our classifier. We further show that our approach allows the discovery of previously unidentified riboregulators, as exemplified by the detection of new LeuA leaders and T-boxes in Streptococci. Finally, we developed PASIFIC (www.weizmann.ac.il/molgen/Sorek/PASIFIC/), an online web-server that, given a user-provided 5′UTR sequence, predicts whether this sequence can adopt two alternative structures conforming with the conditional termination paradigm. This webserver is expected to assist in the identification of new riboswitches and attenuators in the bacterial pan-genome.

Keywords: transcription termination; regulatory premature; computational prediction; prediction regulatory; termination

Journal Title: Nucleic Acids Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.