Chromatin immunoprecipitation, DNase I hypersensitivity and transposase-accessibility assays combined with high-throughput sequencing enable the genome-wide study of chromatin dynamics, transcription factor binding and gene regulation. Although rapidly accumulating publicly available… Click to show full abstract
Chromatin immunoprecipitation, DNase I hypersensitivity and transposase-accessibility assays combined with high-throughput sequencing enable the genome-wide study of chromatin dynamics, transcription factor binding and gene regulation. Although rapidly accumulating publicly available ChIP-seq, DNase-seq and ATAC-seq data are a valuable resource for the systematic investigation of gene regulation processes, a lack of standardized curation, quality control and analysis procedures have hindered extensive reuse of these data. To overcome this challenge, we built the Cistrome database, a collection of ChIP-seq and chromatin accessibility data (DNase-seq and ATAC-seq) published before January 1, 2016, including 13 366 human and 9953 mouse samples. All the data have been carefully curated and processed with a streamlined analysis pipeline and evaluated with comprehensive quality control metrics. We have also created a user-friendly web server for data query, exploration and visualization. The resulting Cistrome DB (Cistrome Data Browser), available online at http://cistrome.org/db, is expected to become a valuable resource for transcriptional and epigenetic regulation studies.
               
Click one of the above tabs to view related content.