LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

LncFunNet: an integrated computational framework for identification of functional long noncoding RNAs in mouse skeletal muscle cells

Photo by paramir from unsplash

Abstract Long noncoding RNAs (lncRNAs) are key regulators of diverse cellular processes. Recent advances in high-throughput sequencing have allowed for an unprecedented discovery of novel lncRNAs. To identify functional lncRNAs… Click to show full abstract

Abstract Long noncoding RNAs (lncRNAs) are key regulators of diverse cellular processes. Recent advances in high-throughput sequencing have allowed for an unprecedented discovery of novel lncRNAs. To identify functional lncRNAs from thousands of candidates for further functional validation is still a challenging task. Here, we present a novel computational framework, lncFunNet (lncRNA Functional inference through integrated Network) that integrates ChIP-seq, CLIP-seq and RNA-seq data to predict, prioritize and annotate lncRNA functions. In mouse embryonic stem cells (mESCs), using lncFunNet we not only recovered most of the functional lncRNAs known to maintain mESC pluripotency but also predicted a plethora of novel functional lncRNAs. Similarly, in mouse myoblast C2C12 cells, applying lncFunNet led to prediction of reservoirs of functional lncRNAs in both proliferating myoblasts (MBs) and differentiating myotubes (MTs). Further analyses demonstrated that these lncRNAs are frequently bound by key transcription factors, interact with miRNAs and constitute key nodes in biological network motifs. Further experimentations validated their dynamic expression profiles and functionality during myoblast differentiation. Collectively, our studies demonstrate the use of lncFunNet to annotate and identify functional lncRNAs in a given biological system.

Keywords: lncfunnet; long noncoding; computational framework; noncoding rnas; functional lncrnas

Journal Title: Nucleic Acids Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.