LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly selective retrieval of accurate DNA utilizing a pool of in situ-replicated DNA from multiple next-generation sequencing platforms

Photo from wikipedia

Abstract Scalable and cost-effective production of error-free DNA is critical to meet the increased demand for such DNA in the field of biological science. Methods based on ‘Dial-out PCR’ have… Click to show full abstract

Abstract Scalable and cost-effective production of error-free DNA is critical to meet the increased demand for such DNA in the field of biological science. Methods based on ‘Dial-out PCR’ have enabled the high-throughput error-free DNA synthesis from a microarray-synthesized DNA pool by labeling with retrieval PCR tags, and retrieving error-free DNA of which the sequence is identified via next generation sequencing (NGS). However, most of the retrieved products contain byproducts due to background amplification of redundantly labeled DNAs. Here, we present a highly selective retrieval method of desired DNA from a pool of millions of DNA clones from NGS platforms. Our strategy is based on replicating entire sequence-verified DNA molecules from NGS plates to obtain population-controlled DNA pool. Using the NGS-replica pool, we could perform improved and selective retrieval of desired DNA from the replicated DNA pool compared to other dial-out PCR based methods. To evaluate the method, we tested this strategy by using 454, Illumina, and Ion Torrent platforms for producing NGS-replica pool. As a result, we observed a highly selective retrieval yield of over 95%. We anticipate that applications based on this method will enable the preparation of high-fidelity sequenced DNA from heterogeneous collections of DNA molecules.

Keywords: highly selective; dna; pool; dna pool; selective retrieval

Journal Title: Nucleic Acids Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.