LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distinct and redundant functions of three homologs of RNase III in the cyanobacterium Synechococcus sp. strain PCC 7002

Photo by rednala from unsplash

Abstract RNase III is a ribonuclease that recognizes and cleaves double-stranded RNA. Across bacteria, RNase III is involved in rRNA maturation, CRISPR RNA maturation, controlling gene expression, and turnover of… Click to show full abstract

Abstract RNase III is a ribonuclease that recognizes and cleaves double-stranded RNA. Across bacteria, RNase III is involved in rRNA maturation, CRISPR RNA maturation, controlling gene expression, and turnover of messenger RNAs. Many organisms have only one RNase III while others have both a full-length RNase III and another version that lacks a double-stranded RNA binding domain (mini-III). The genome of the cyanobacterium Synechococcus sp. strain PCC 7002 (PCC 7002) encodes three homologs of RNase III, two full-length and one mini-III, that are not essential even when deleted in combination. To discern if each enzyme had distinct responsibilities, we collected and sequenced global RNA samples from the wild type strain, the single, double, and triple RNase III mutants. Approximately 20% of genes were differentially expressed in various mutants with some operons and regulons showing complex changes in expression levels between mutants. Two RNase III’s had a role in 23S rRNA maturation and the third was involved in copy number regulation one of six native plasmids. In vitro, purified RNase III enzymes were capable of cleaving some of the known Escherichia coli RNase III target sequences, highlighting the remarkably conserved substrate specificity between organisms yet complex regulation of gene expression.

Keywords: strain; rnase iii; pcc 7002; iii

Journal Title: Nucleic Acids Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.