LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural insights into chromosome attachment to the nuclear envelope by an inner nuclear membrane protein Bqt4 in fission yeast

Photo from wikipedia

Abstract The dynamic association of chromosomes with the nuclear envelope (NE) is essential for chromosome maintenance. Schizosaccharomyces pombe inner nuclear membrane protein Bqt4 plays a critical role in connecting telomeres… Click to show full abstract

Abstract The dynamic association of chromosomes with the nuclear envelope (NE) is essential for chromosome maintenance. Schizosaccharomyces pombe inner nuclear membrane protein Bqt4 plays a critical role in connecting telomeres to the NE, mainly through a direct interaction with the telomeric protein Rap1. Bqt4 also interacts with Lem2 for pericentric heterochromatin maintenance. How Bqt4 coordinates the interactions with different proteins to exert their functions is unclear. Here, we report the crystal structures of the N-terminal domain of Bqt4 in complexes with Bqt4-binding motifs from Rap1, Lem2, and Sad1. The structural, biochemical and cellular analyses reveal that the N-terminal domain of Bqt4 is a protein-interaction module that recognizes a consensus motif and plays essential roles in telomere-NE association and meiosis progression. Phosphorylation of Bqt4-interacting proteins may act as a switch to regulate these interactions during cell cycles. Our studies provide structural insights into the identification and regulation of Bqt4-mediated interactions.

Keywords: protein; nuclear envelope; nuclear membrane; bqt4; inner nuclear; membrane protein

Journal Title: Nucleic Acids Research
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.