LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A pipeline for computational design of novel RNA-like topologies

Photo by edhoradic from unsplash

Abstract Designing novel RNA topologies is a challenge, with important therapeutic and industrial applications. We describe a computational pipeline for design of novel RNA topologies based on our coarse-grained RNA-As-Graphs… Click to show full abstract

Abstract Designing novel RNA topologies is a challenge, with important therapeutic and industrial applications. We describe a computational pipeline for design of novel RNA topologies based on our coarse-grained RNA-As-Graphs (RAG) framework. RAG represents RNA structures as tree graphs and describes RNA secondary (2D) structure topologies (currently up to 13 vertices, ≈260 nucleotides). We have previously identified novel graph topologies that are RNA-like among these. Here we describe a systematic design pipeline and illustrate design for six broad design problems using recently developed tools for graph-partitioning and fragment assembly (F-RAG). Following partitioning of the target graph, corresponding atomic fragments from our RAG-3D database are combined using F-RAG, and the candidate atomic models are scored using a knowledge-based potential developed for 3D structure prediction. The sequences of the top scoring models are screened further using available tools for 2D structure prediction. The results indicate that our modular approach based on RNA-like topologies rather than specific 2D structures allows for greater flexibility in the design process, and generates a large number of candidate sequences quickly. Experimental structure probing using SHAPE-MaP for two sequences agree with our predictions and suggest that our combined tools yield excellent candidates for further sequence and experimental screening.

Keywords: pipeline; rna like; design novel; novel rna; design

Journal Title: Nucleic Acids Research
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.