LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Brain Physiological Response and Adaptation During Spaceflight.

Photo by satheeshsankaran from unsplash

More than half of astronauts returning from long-duration missions on the International Space Station present with neuro-ocular structural and/or functional changes, including optic disc edema, optic nerve sheath distension, globe… Click to show full abstract

More than half of astronauts returning from long-duration missions on the International Space Station present with neuro-ocular structural and/or functional changes, including optic disc edema, optic nerve sheath distension, globe flattening, choroidal folds, or hyperopic shifts. This spaceflight-associated neuro-ocular syndrome (SANS) represents a major risk to future exploration class human spaceflight missions, including Mars missions. Although the exact pathophysiology of SANS is unknown, evidence thus far suggests that an increase in intracranial pressure (ICP) relative to the upright position on Earth, which is due to the loss of hydrostatic pressure gradients in space, may play a leading role. This review focuses on brain physiology in the spaceflight environment, specifically on how spaceflight may affect ICP and related indicators of cranial compliance, potential factors related to the development of SANS, and findings from spaceflight as well as ground-based spaceflight analog research studies.

Keywords: response adaptation; brain physiological; physiological response; physiology; adaptation spaceflight; brain

Journal Title: Neurosurgery
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.