LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-high piezoelectric coefficients and strain-sensitive Curie temperature in hydrogen-bonded systems

Photo from wikipedia

Abstract We propose a new approach to obtain ultra-high piezoelectric coefficients that can be infinitely large theoretically, where ferroelectrics with strain-sensitive Curie temperature are necessary. We show the first-principles plus… Click to show full abstract

Abstract We propose a new approach to obtain ultra-high piezoelectric coefficients that can be infinitely large theoretically, where ferroelectrics with strain-sensitive Curie temperature are necessary. We show the first-principles plus Monte Carlo simulation evidence that many hydrogen-bonded ferroelectrics (e.g. organic PhMDA) can be ideal candidates, which are also flexible and lead-free. Owing to the specific features of hydrogen bonding, their proton hopping barrier will drastically increase with prolonged proton transfer distance, while their hydrogen-bonded network can be easily compressed or stretched due to softness of hydrogen bonds. Their barriers as well as the Curie temperature can be approximately doubled upon a tensile strain as low as 2%. Their Curie temperature can be tuned exactly to room temperature by fixing a strain in one direction, and in another direction, an unprecedented ultra-high piezoelectric coefficient of 2058 pC/N can be obtained. This value is even underestimated and can be greatly enhanced when applying a smaller strain. Aside from sensors, they can also be utilized for converting either mechanical or thermal energies into electrical energies due to high pyroelectric coefficients.

Keywords: hydrogen bonded; temperature; high piezoelectric; ultra high; curie temperature

Journal Title: National Science Review
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.