LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hierarchical palladium catalyst for highly active and stable water oxidation in acidic media

Photo from wikipedia

ABSTRACT Acidic water electrolysis is of great importance for boosting the development of renewable energy. However, it severely suffers from the trade-off between high activity and long lifespan for oxygen… Click to show full abstract

ABSTRACT Acidic water electrolysis is of great importance for boosting the development of renewable energy. However, it severely suffers from the trade-off between high activity and long lifespan for oxygen evolution catalysts on the anode side. This is because the sluggish kinetics of oxygen evolution reaction necessitates the application of a high overpotential to achieve considerable current, which inevitably drives the catalysts far away from their thermodynamic equilibrium states. Here we demonstrate a new oxygen evolution model catalyst-hierarchical palladium (Pd) whose performance even surpasses the benchmark Ir- and Ru-based materials. The Pd catalyst displays an ultralow overpotential (196 mV), excellent durability and mitigated degradation (66 μV h−1) at 10 mA cm−2 in 1 M HClO4. Tensile strain on Pd (111) facets weakens the binding of oxygen species on electrochemical etching-derived hierarchical Pd and thereby leads to two orders of magnitudes of enhancement of mass activity in comparison to the parent Pd bulk materials. Furthermore, the Pd catalyst displays the bifunctional catalytic properties for both oxygen and hydrogen evolutions and can deliver a current density of 2 A cm–2 at a low cell voltage of 1.771 V when fabricated into polymer electrolyte membrane electrolyser.

Keywords: palladium catalyst; hierarchical palladium; water; oxygen evolution

Journal Title: National Science Review
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.