Abstract Amino transaminases (ATAs) have been supported on a 2D ITQ-2 zeolite through electrostatic interactions, resulting in a highly stable active biocatalyst to obtain a variety of valuable chiral amines… Click to show full abstract
Abstract Amino transaminases (ATAs) have been supported on a 2D ITQ-2 zeolite through electrostatic interactions, resulting in a highly stable active biocatalyst to obtain a variety of valuable chiral amines starting from prochiral ketones derived from biomass. We have extended the biocatalyst applications by designing a chemo-enzymatic process that allows, as the first step, prochiral ketones to be obtained from biomass-derived compounds through an aldol condensation–reduction step using a bifunctional metal/base catalyst. The prochiral ketone is subsequently converted into the chiral amine using the immobilized ATA. We show that it is feasible to couple both steps in a semi-continuous process to produce industrially relevant chiral amines with yields of >95% and ∼100% enantiomer excess.
               
Click one of the above tabs to view related content.