LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Space-frequency-polarization-division multiplexed wireless communication system using anisotropic space-time-coding digital metasurface

Photo from wikipedia

Abstract In the past few years, wireless communications based on digital coding metasurfaces have gained research interest owing to their simplified architectures and low cost. However, in most of the… Click to show full abstract

Abstract In the past few years, wireless communications based on digital coding metasurfaces have gained research interest owing to their simplified architectures and low cost. However, in most of the metasurface-based wireless systems, a single-polarization scenario is used, limiting the channel capacities. To solve the problem, multiplexing methods have been adopted, but the system complexity is inevitably increased. Here, a space-frequency-polarization-division multiplexed wireless communication system is proposed using an anisotropic space-time-coding digital metasurface. By separately designing time-varying control voltage sequences for differently oriented varactor diodes integrated on the metasurface, we achieve frequency-polarization-division multiplexed modulations. By further introducing different time-delay gradients to the control voltage sequences in two polarization directions, we successfully obtain space-frequency-polarization-division multiplexed modulations to realize a wireless communication system with a new architecture. The new communication system is designed with compact dual-polarized meta-elements, and can improve channel capacity and space utilization. Experimental results demonstrate the high-performance and real-time transmission capability of the proposed communication system, confirming its potential application in multiple-user collaborative wireless communications.

Keywords: communication system; time; space; polarization

Journal Title: National Science Review
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.