LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Near-Infrared Optical Contrast of Skull Base Tumors During Endoscopic Endonasal Surgery.

Photo from wikipedia

BACKGROUND Near-infrared (NIR) tumor contrast is achieved through the "second-window ICG" technique, which relies on passive accumulation of high doses of indocyanine green (ICG) in neoplasms via the enhanced permeability and… Click to show full abstract

BACKGROUND Near-infrared (NIR) tumor contrast is achieved through the "second-window ICG" technique, which relies on passive accumulation of high doses of indocyanine green (ICG) in neoplasms via the enhanced permeability and retention effect. OBJECTIVE To report early results and potential challenges associated with the application of second-window ICG technique in endonasal endoscopic, ventral skull-base surgery, and to determine potential predictors of NIR signal-to-background ratio (SBR) using endoscopic techniques. METHODS Pituitary adenoma (n = 8), craniopharyngioma (n = 3), and chordoma (n = 4) patients received systemic infusions of ICG (5 mg/kg) approximately 24 h before surgery. Dual-channel endoscopy with visible light and NIR overlay were photodocumented and analyzed post hoc. RESULTS All tumors (adenoma, craniopharyngioma, chordoma) demonstrated NIR positivity and fluoresced with an average SBR of 3.9 ± 0.8, 4.1 ± 1.7, and 2.1 ± 0.6, respectively. Contrast-enhanced T1 signal intensity proved to be the single best predictor of observed SBR (P = .0003). For pituitary adenomas, the sensitivity, specificity, positive predictive value, and negative predictive value of NIR-guided identification of tumor was 100%, 20%, 71%, and 100%, respectively. CONCLUSION In this preliminary study of a small set of patients, we demonstrate that second-window ICG can provide NIR optical tumor contrast in 3 types of ventral skull-base tumors. Chordomas demonstrated the weakest NIR signal, suggesting limited utility in those patients. Both nonfunctional and functional pituitary adenomas appear to accumulate ICG, but utility for margin detection for the adenomas is limited by low specificity. Craniopharyngiomas with third ventricular extension appear to be a particularly promising target given the clean brain parenchyma background and strong SBR.

Keywords: base tumors; contrast; near infrared; icg; skull base

Journal Title: Operative neurosurgery
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.