LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intraoperative Computed Tomography and Finite Element Modelling for Multimodal Image Fusion in Brain Surgery.

Photo from wikipedia

BACKGROUND intraoperative computer tomography (iCT) and advanced image fusion algorithms could improve the management of brainshift and the navigation accuracy. OBJECTIVE To evaluate the performance of an iCT-based fusion algorithm… Click to show full abstract

BACKGROUND intraoperative computer tomography (iCT) and advanced image fusion algorithms could improve the management of brainshift and the navigation accuracy. OBJECTIVE To evaluate the performance of an iCT-based fusion algorithm using clinical data. METHODS Ten patients with brain tumors were enrolled; preoperative MRI was acquired. The iCT was applied at the end of microsurgical resection. Elastic image fusion of the preoperative MRI to iCT data was performed by deformable fusion employing a biomechanical simulation based on a finite element model. Fusion accuracy was evaluated: the target registration error (TRE, mm) was measured for rigid and elastic fusion (Rf and Ef) and anatomical landmark pairs were divided into test and control structures according to distinct involvement by the brainshift. Intraoperative points describing the stereotactic position of the brain were also acquired and a qualitative evaluation of the adaptive morphing of the preoperative MRI was performed by 5 observers. RESULTS The mean TRE for control and test structures with Rf was 1.81 ± 1.52 and 5.53 ± 2.46 mm, respectively. No significant change was observed applying Ef to control structures; the test structures showed reduced TRE values of 3.34 ± 2.10 mm after Ef (P < .001). A 32% average gain (range 9%-54%) in accuracy of image registration was recorded. The morphed MRI showed robust matching with iCT scans and intraoperative stereotactic points. CONCLUSIONS The evaluated method increased the registration accuracy of preoperative MRI and iCT data. The iCT-based non-linear morphing of the preoperative MRI can potentially enhance the consistency of neuronavigation intraoperatively.

Keywords: fusion; ict; image fusion; preoperative mri

Journal Title: Operative neurosurgery
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.